

It's another early morning in mid-January (2020-01-16, 07:00 CEST, UT+1), -- and another civi dawn with thin high cirrus and drifting Stratus fractus clouds below, interspersed by a few long holes with clear(ish) sky, where I can catch the 21 -day (61%) waning Moon. My target this morning is reasonably high up at 30° altitude in Virgo towards the SW, so I can get some $1 / 2-1-$ minute-long views of our satellite between the clouds; I can work with that.

Inspired by some excellent 3D fly-by videos created by John Moore, I did this simple 3D view of the Hyginus area using LROC images in Quickmap. It shows the Triesnecker rilles quite well, and also the Imbrium sculpture, both in the area E of Triesnecker and in the long DMD covered hills N of Hygins.

I also did a short transect along the bottom of the W "arm" of the Hyginus rille close to the large caldera; The surrounding lava plain is at roughly -780 m elevation and the flat bottom of the lava channel is at -900m elevation (i.e. $\sim 120 \mathrm{~m}$ depth). Along the short (ca. 10 Km length) transect in the bottom of the rille there are five fire-fountain vents of diameters $1-2 \mathrm{Km}$ and depths $1.1-1.5 \mathrm{Km}$, as indicated in the figure.

The terminator this morning passes through Serenitatis, along the W shoreline of Tranquilitatis and then through the E part of "the Great Peninsula", close to Macrolytus. Some of the most interesting sites on the Moon are those shaped by endogenic forces of volcanism such as lava shields and ash domes, uplifted fractured crater floors (FFC), fire fountain dark ash deposits (DMD), volcanic vents, calderas and sinuous rilles created by collapse of emptied lava channels. These are found concentrated in several locations on the moon including the NW sector of Procellarum (the Aristarchus plateau) plus the area around Pallas-Murchison SE of the Apennine Mountains. In this short observation I'll try to focus in on the DMDs and sinuous rilles in the trough just SE of the Apennines (the basin rim of Imbrium)

Already at low magnifications (49x) the dark ash deposits (the Aestuum and Bode pyroclastics) at the E shores of Sinus Aestuum are quite conspicuous, as are also the Hyginus pyroclastics N of the Hyginus; At a higher magnification (80x), I can see the volcanic sinuous Hyginus rille itself (and also the Aridaeus rille to the E , which is a straight flat-floored graben between two parallel fault lines and not of volcanic origin). At the highest magnification I can sensibly use tonight (172x), I look E of the Triesnecker crater for the Triesnecker rille network, which are probably tension fractures created by lava uplifting in the Sinus Medii trough outside the Imbrium basin rim. I'm not able though to see this rille system this morning though.

172x Magrification, $06^{\circ} \mathrm{TFOV}$
Zeiss 100/640 APQ refractor, FFC @ 3.5x barlow, 13 mm ETH
iPhone XS, NightCap v 9.7 App

MDON21dy (61\%)

Waring At30 in Vrgo

2020-01-16, 07:00 CEST (UT+1) Transparency: 2-4/7, Seeing: 7/10

It's an early morning here in the start of November (2020-11-08, 03:30), and I'm out in my sub/urban transition backyard (SQM 19.3, NELM 5.7) with my small 4" F/6.4 refractor to observe the last quarter, Moon. The 22-day moon is 55% illuminated, hanging up at 51° altitude in Cancer, the temperature is a cool $5^{\circ} \mathrm{C}$ with 93% humidity and the dew point is close at my heels at $4^{\circ} \mathrm{C}$. The transparency is negatively affected by the high humidity resulting in a faint high-altitude haze with intermittent drifting alto-cumulus clouds. The seeing is OK tonight, calm and just above medium.

This early morning will be "second light" for my new IMX183 2.4 $\mu \mathrm{m}$ pix 20MP camera, an upgrade from my ICX445 3.752.4 $\mu \mathrm{m}$ pix 1.3MP. "First light" was 5 days ago in worse conditions (more haze and wind), but I had a good observation never the less, and the new camera tested out well on my small refractor. I really like the option of using it with good resolution both natively at prime focus as well as at $2 \times$ Barlow, and I love the flexibility of easily scaling the field of view by adjusting the region of interest from a whopping 5496×3672 down to 800×600 !

Tonight, l'll use my 4 " at $\mathrm{f} / 12.8$ for catching the full last-quarter moon at ROI 4120×3672, with zoom-in, first at 1920×1200 (S. Pole region) and then close-ups at 800×600 (Tycho-Clavius, E. Nubium, Copernicus areas). Here are a couple of my observations, starting with the full view of the last quarter moon. This photo was created from a 15 s capture using 2.3 ms exposure with 190 gain for histogram $\sim 75 \% .25 \%$ of the recorded frames were then stacked and the resulting image was adjusted in tone and sharpness.

To maintain resolution across the entire dynamic range of the full lunar surface I ended up with a rather dark version of the Moon, but with lots of details as can be studied in the zoomed-in version: from the sun-facing Orientale, Gamma Reiner and Aristarchus past Copernicus with the Hortensius domes, and down to the Straight Wall with the nearby Birt Rille (including the volcanic vent with DMD) close to the terminator. Not bad l'd say, on an only so-so day (night).Quarter Moon

The Last Quarter Moon -- SW region

Below is seen the SW region of the southern cratered highlands, caught at last quarter Moon during the same observation as described in my previous post. I've reduced the ROI to a medium of 1920×1200, taking a 30 sec recording at 4 ms exposure, using gain 165 for 75% histogram. The image is the result of 30% AS!3 stacking with subsequent adjustment of tone and sharpness for max detail.

The $19 \mathrm{~km} \emptyset$ young Copernican crater 'Byrgius A' is prominent at the NW corner of the photo, as are the triangle of large craters at the center: Schickard-Schiller-Hainzel, and indeed the "Ace of Diamonds" towards the SE formed by Tycho-Longomontanus-Maginus-Clavius.

Some long rilles can be seen, including the 3 Hippalus Rilles at the SE end of Humorum and the long Hesiodus Rille from Capuanus up to Pitatus. Many interesting details can be studied in the crater walls and floors, where craterlets down to $2-3 \mathrm{~km} \varnothing$ can be glimpsed:

The Last Quarter Moon Ancient Thebit

Closing this observation, here's a couple of close-up images captured with a smaller region of interest ($800 \times 600 \mathrm{px}$).
The first image shows the E Nubium area, with -- among other features -- the Birt Rille (volcanic pit with lava channel) and the Straight Wall (linear fault) in the large $200 \mathrm{Km} \varnothing$ lava-drowned "Ancient Thebit" crater.
Also prominent in this area is the even larger $235 \mathrm{~km} \emptyset$ Deslandres walled plain, with a roughly textured crater floor, filled by impact ejecta and pitted by the large Hell crater plus several clusters and chains of small secondary craters.

The Last Quarter Moon

Copernicus

The autumn weather here in Denmark the past couple of weeks has been abysmally abominable with windy, overcast and rainy days and nights. Not a chance for even a quick grab- $\&$-go view of the universe... So, here's instead a final observation from the latest night, when I was able to go out and study the moon, -- specifically the area around the magnificent Copernicus crater.

The image below shows the arc of Nectarian Epoch lunar crust, uplifted by the Imbrium Basin impact, and settled as the rugged massifs of the Carpathian and Apennine Mountain ranges. From the same event, Imbrium impact melt and crushed crust were ejected and deposited radially in large swaths of hilly, hummocky terrain, intermixed with regions of underlying faulted Nectarian bedrock; Examples of such Lower Imbrian ejecta deposits are seen W of Copernicus and to the S and E of Reinhold.
Later, the impact basin and its surroundings with Lower Imbrian craters like Stadius, were partly covered by lava flows in Upper Imbrium, and some regions (as can be seen SE of Copernicus) were further coated by fire-fountain pyroclastic dark mantle material (DMD: ash with small glass beads) or adorned with domes from slowly erupting lava vents over small near-surface magma chambers (examples N of Hortensius crater).
Recently, in the Eratosthenian and following Copernican Epochs, large impacts formed terraced craters like Eratosthenes and Copernicus, the youngest with rays of bright pulverized ejecta and chains of secondary craters.
So all-in-all, this is a geologically quite interesting area of the lunar surface The weather conditions were not the best though, with a transparency varying from 2-4/7 and getting worse as the observation progressed. The image below was taken through a thickening layer of high clouds, so the result is somewhat softer than it otherwise could have been...

